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Abstract

Firechain is a generalized, asynchronous, event-driven distributed computing platform designed for decentralized
applications. Its ledger model is a hybrid DAG-blockchain structure, wherein transaction ledgers are segregated at the
account level. To strengthen the security and consistency guarantees of the DAG-based account ledger model, Firechain
introduces a blockchain-based global validation and local consistency enforcement layer. Firechain uses a layered consen-
sus model based on Bullshark, through which transactions are committed to the network and processed asynchronously.
Firechain’s VM, the Async VM, is largely compatible with Ethereum’s EVM. However, unlike Ethereum, Firechain
adopts an asynchronous, event-driven architecture. In this model, information is transmitted through messages between
network participants, which greatly improves system throughput and scalability. Firechain supports digital assets
natively and enables trust-minimized cross-chain value and data transfers through the Vortex. Rather than charging
network participants fees for transacting over the network, Firechain manages resource allocation through the use of
a novel fee-less rate limiting mechanism called Heat. Firechain natively supports advanced functionality, including
reactive execution, scheduling, a DNS-like name service, state compaction, and highly targeted scaling solutions.

1 Introduction

1.1 Definitions

Firechain is a decentralized application platform that can
support complex smart contracts, each of which is techni-
cally a state machine with independent state and different
operational logic which can communicate asynchronously
using a shared global event system.

At the most basic level, Firechain operates as a transac-
tional state machine. The state of the system, also referred
to as the world or global state (s ∈ S), is a composite of the
state of each independent account. An event which leads to
changes in any account’s state is called a transaction.

Definition 1.1 (Transactional State Machine (TSM))
Generally, a transactional state machine is an N-tuple
(T ,S, g, δ):

T , a set of transactions;
S, a set of account states;
g ∈ S, the initial state (i.e. that proposed by the genesis

block); and
δ : S × T → S, a state transition function.

The semantics of the TSM’s discrete transition system
is critical to understanding how the ”current” world state is
defined.

Definition 1.2 (TSM Semantics) Semantically, TSMs
are discrete transition systems defined as (T ,S, s0, δ):

(S, s0,→)
→∈ S × S is a transition relationship.

Building on these concepts, Firechain is designed as a
distributed system with causal consistency. A fault-tolerant
consensus algorithm enables nodes to come to agreement
as to the exact contents of the world state at any given
time, even when several malicious nodes are participating in
consensus with the intention of disrupting normal operation.
In real-world applications, the complete state of any appli-
cation is generally too large to be frequently transmitted
between nodes. Therefore, for scalability and performance
reasons, nodes must only transfer a set of transactions,
which, when applied in order, are guaranteed to result in
the same final state. Firechain organizes related groups of
transactions into a specific data structure referred to as a
Ledger.

Definition 1.3 (Ledger) A ledger is an append-only log
containing a set of transactions with an abstract data type
recursively constructed. The mathematical definition is as
follows: {

l = Γ(Tt)
l = l1 + l2

Tt ∈ 2T : a set of transactions;
Γ ∈ 2T → L: a function for building the current state

from that set of transactions;
L: a set of ledgers; and
+ : L × L → L: the operation of merging ledgers to

determine the composite state.

In most distributed systems, ledgers represent a group
of transactions, rather than an abstractly defined compos-
ite state. For example, both Bitcoin and Ethereum use
a single shared ledger wherein transactions are globally
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ordered using a directed acyclic graph model commonly
known as a blockchain. As more entries are added to the
ledger, modifying any particular transaction in the ledger
requires the reconstruction of all later state entries, thereby
increasing the cost of tampering with the transaction as
time progresses. This immutability guarantee is the basic
principle upon which finality is defined.

The same group of transactions may technically result in
different (but equally valid) states; however, these variations
are the result of incorrectly ordered state transitions. Such
variations can result in nodes building inconsistent ledgers.
Most distributed ledger networks refer to this as a fork.

Definition 1.4 (Fork) Given two proposed ledgers
(Tt, Tt

′ ∈ 2T and Tt ⊆ Tt
′), any case where l = Γ1(Tt)

and l′ = Γ2(Tt
′), but where l ⪯̸ l′, it stands to reason that l

and l′ are forks.

The transactional state machine’s semantics allow us to
prove that, given an initial state and a certain state transi-
tion, and where there are no proposed forks of either, every
node will eventually reach the same state. So, if a forked
ledger is proposed, will it certainly lead to nodes entering
a different state? Clearly this depends on the inherent
logic of the transaction in the ledger and the methodology
by which partial ordering between transactions is enforced.
But in today’s most popular distributed networks, the
unfortunate answer is yes. While some transactions may
be commutative, they can still lead to forks due to flaws in
the design of the ledger’s organizational model.

In cases where the system starts from a given state and
two ledgers which result in the same final state but where
transaction ordering varies, the outcome is referred to as a
partial fork.

Definition 1.5 (Partial Fork) Given the state s0 ∈ S,

where ledger l1, l2 ∈ L, s0
l1→ s1, s0

l2→ s2, any case where
l1 ̸= l2 but s1 = s2 is considered a partial fork.

Figure 1: Partial Fork

While the ultimate state is identical in partial fork
situations, a proper ledger design should aim to minimize

the probability of such cases. This is because when a fork
occurs, each node needs to choose one from multiple forked
ledgers. In order to ensure global state consistency, nodes
must use the same algorithm to enforce the exact selection
and ordering criteria. Generally, this is referred to as a
consensus algorithm.

Definition 1.6 (Consensus Algorithm) An idempotent
state resolution system that, when supplied an arbitrarily
ordered set of proposed ledgers, returns the canonical state:

Φ : 2L → L

Clearly, the consensus algorithm plays a critical role
in a distributed ledger system. A well-designed consensus
algorithm should feature a convergence speed high enough to
limit variation in cross-node consensus, as well as resilience
against a range of attacks.

1.2 Background

While Bitcoin and several of its descendants proposed vari-
ous designs that accommodate simple uses cases, Ethereum
is widely regarded as the best example of a general purpose
decentralized computing platform. Ethereum’s definition of
the world state is S = ΣA, a mapping from an account a ∈ A
and the state of an account σa ∈ Σ. Therefore, every state
transition is by definition a global one, which means that
any observer can compute the current state of any account
at any time.

The TSM transition function δ of Ethereum is defined
by a set of instructions. These typically take the form of
smart contracts, wherein groups of instructions define the
logic by which transactions are governed. Ethereum’s core
innovation is a Turing-complete virtual machine known as
the Ethereum Virtual Machine (or EVM). The instructions
supported by the EVM are referred to as EVM opcodes.
Developers write smart contracts through a programming
language called Solidity which is similar to JavaScript in
many ways. These Solidity programs are compiled into
EVM-compatible instructions and published to the network
using a specially crafted deployment transaction. Once the
smart contract is successfully deployed, it is accessible at a
given address a and defines its own state transition function
δa.

The EVM represents a powerful innovation and has been
widely used in the development of similar platforms. How-
ever, it is just another step in the evolution of distributed
ledger systems which introduced new issues. For example,
there is a conspicuous lack of standard libraries, as well as a
host of scalability and security concerns that have plagued
its adoption and severely limited scalability.

The ledger structure of Ethereum consists of blocks, each
of which contains a list of transactions, and where each new
block refers to the hash of the previous block to form a chain
structure.

Γ({t1, t2, ...|t1, t2, ... ∈ T}) = (..., (t1, t2, ...)) (1)
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The most notable advantage of this structure is its very
strong resilience against tampering with historical entries.
On the other hand, because a single global ledger maintains
the complete ordering of all transactions in history, changing
the ordering of any two transactions will necessarily result
in a different ledger. This has the effect of dramatically
increasing the probability of forks. In fact, the definition
of the state space of Ethereum’s TSM is technically a tree:
the initial state is the root node, different ledger candidates
represent various vertices, and the leaf node is the canonical
final state. In real-world use cases, the vast majority of
candidate leaf nodes contain the exact same state, which
leads to a large number of partial forks. Partial forks,
in turn, produce blocks known as ommer or uncle blocks.
Such blocks represent wasted resources and may potentially
introduce ambiguity with regard to the final state.

Initially, Ethereum relied on a Proof-of-Work (PoW)
consensus algorithm Φ modeled after that which was first
introduced by Bitcoin. Ethereum’s PoW algorithm relied on
a mathematical problem that is easily verifiable but required
substantial resources to solve. It can be generally defined
as a mathematical challenge where, given a hash function
h : N → N , the correct solution x is that which satisfies
the requirement h(T + x) ≥ d. In this formula, d represents
the previous block’s difficulty and T represents the set of
transactions and their ordering within the proposed block.
All proposed blocks required a valid PoW solution satisfying
this constraint.

The sum of the difficulty of all blocks represents the total
difficulty:

D(l) = D(
∑
i

li) =
∑
i

D(li) (2)

Therefore, identifying the correct state given two forked
ledgers is as simple as choosing the one with the highest
difficulty:

Φ(l1, l2, ..., ln) = lm where m = arg max
i∈1..n

(D(li)) (3)

Proof-of-Work consensus allowed Ethereum to remain
secure against a variety of attacks, the most obvious of which
are spam and denial-of-service. However, there are at least
two major problems with this approach.

The first issue is that solving this type of equation re-
quires a substantial amount of computing resources, which,
in turn, leads to a huge waste of energy and, therefore,
an increasingly large expense to participate in consensus.
The downstream effect of increasing operational costs is a
similarly increasing cost of transacting on the network.

The second issue is the algorithm’s slow convergence,
which directly impacts the system’s overall throughput. To
illustrate the impact of this problem, one need only point
out that the maximum transactions-per-second (TPS) of
Ethereum’s PoW algorithm was approximately 15, which is
at least an order of magnitude less than would be necessary
to meet the needs of most user-facing applications.

1.3 Improvements

Following the introduction of Ethereum, the broader com-
munity of decentralized ledger developers began to consider
and implement improvements to the system from different
directions. Starting with the abstract model of the system as
proposed by Ethereum, the following areas of focus emerged:

• System state design S

• State transition functions δ

• Ledger structure Γ

• Consensus algorithms Φ

1.3.1 System state design

The basic idea of improving the state of the system is
to localize the global state of the world, such that each
node is no longer concerned with all transactions and state
transfers but rather only maintains a subset of this state.
In this way, the potential variance of the sets S and T are
greatly reduced, which has the effect of greatly improving
the scalability of the system. The most notable network
that has taken this approach is Cosmos.

Almost every attempt at improving this design can be
generalized as a side-chain based scheme which sacrifices the
wholeness of the system state in exchange for scalability.
The result is that the decentralization of the system is
inherently weakened: the transaction history of a smart
contract is no longer saved by every node in the network,
but, rather, by some subset of nodes. In addition, cross-
contract interactions become a severe bottleneck that limits
the scalability of such systems. For example, in Cosmos,
interactions in different so-called Zones require a common
Hub to complete.

1.3.2 State transition functions

Another direction taken by some projects is to provide
more flexibility in system design and the selection of smart
contract programming languages. For example, RChain’s
Rholang is based on π calculus, and smart contracts on NEO
can be written in popular languages such as Java and C#.
EOS contracts are written in C/C++. While this may seem
like a reasonable approach that may offer an easier path
for conventional software engineers entering the space, it
appears to be having the opposite effect in practice.

1.3.3 Ledger structure

The ledger structure is likely the most promising area of
improvement. A single, globally shared linear ledger is
technically inferior to a nonlinear ledger that only records
partial order relations. The basic concept of a nonlinear
ledger model can be described as a Directed Acyclic Graph
(DAG). Some earlier projects have attempted to leverage
DAGs, including Byteball, IOTA and Nano, and others use
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DAGs for a subset of network activity, for example to enable
non-public account states. Very few projects based on DAGs
have managed to successfully implement smart contracts, in
part due to factors such as the lack of a global clock or global
consistency guarantees.

1.3.4 Consensus algorithms

With consensus algorithms being the most obvious bottle-
neck in blockchain systems, it has been an area of intense
research and development. Most of the approaches pub-
lished to date aim to improve the throughput of the system,
and one of the key focuses has been to suppress partial forks.

Suppose that C users have the right to produce ledgers,
M = |L|, N = |S|, Mi = |Li|, where Li = {l|f(l) = si, si ∈
S}.

The probability of partial fork can be determined using
the following formula:

Pff =

N∑
i=1

(
Mi

M

)C

− 1

MC−1
(4)

Therefore, we can identify two possible ways to reduce
the probability of partial forks:

• Establish clear definitions for equivalence of relation-
ships in L of the ledger set, segregate equivalence
classes, and construct fewer forked ledgers; or

• Restrict the set of users who have the right to produce
ledgers, thereby reducing C and limiting the domain
of variance by increasing centralization.

Firechain focuses heavily on the former approach, and
the latter has been the primary focus of many other net-
works. In a purely PoW system, any participant has the
right to produce a block. Generally, Proof of Stake (PoS)
algorithms limit the power of the production block to those
with special privileges, and Delegated Proof of Stake (DPoS)
algorithms further limit the set of producers to a typically
small group of delegates.

For example, Cardano uses a PoS algorithm called
Ouroboros, which has been formally validated and provides
strict proofs of its characteristics. EOS’s BFT-DPOS al-
gorithm is a variant of the DPoS model which improves
throughput by simply producing blocks more frequently.
Cosmos uses an algorithm called Tendermint, which, inci-
dentally, is widely used in other projects as well.

2 Ledgers

2.1 Overview

The basic purpose of a ledger is to determine the ordering
of transactions, which, in turn, affects the following two
aspects:

• Consistency: Since the state of the system cannot
be defined as a Conflict-free replicated data type
(CRDT), not all transactions will be valid when pro-
cessed out of order, thus the ordering of transactions
may lead to the system entering a different state.

• Finality: Transactions are packaged into blocks, each
of which contains a hash that references another prior
block. The order of transactions is a key component in
that hash linking scheme. The more times a block is
directly or indirectly referenced, the greater the cost of
tampering with that block. This is because any change
to any transaction therein would necessarily result in
a different hash, which would lead to invalid references
in all later blocks.

Figure 2: Merging with the canonical state

In general, the two primary objectives in designing a
robust ledger model are as follows:

• Low Collision Rate: as discussed in the previous
section, a significantly lower partial fork rate can
be achieved by establishing an equivalency class and
regarding groups of changes which lead the system into
the same end state as a single changeset. In other
words, the system should allow a loose partial ordering
relationship between transactions such that they are
more easily sequentially exchangeable.

• Tamper Resistance: when a transaction t is modi-
fied in the ledger l, in the two sub-ledgers of the book
l = l1 + l2, the sub-ledger l1 is not affected, and the
hash references in the sub-ledger l2 need to be rebuilt
to form a new valid ledger l′ = l1 + l2

′. The affected
sub-ledger, then, would be l2 = Γ(T2), T2 = {x|x ∈
T, x > t}. To put it more plainly, the cost of tampering
with transactions is proportional to the strength of the
partial ordering relationship. Thus, it is necessary to
maintain a reasonably strong partial order relationship
between transactions as much as possible in order to
increase the overhead and scope of |T2|.

Clearly, the above two objectives are contradictory, and,
therefore, certain trade-offs must be made when designing
the ledger model. The minimum viable approach is a typical
set-based structure which is common in centralized systems.

The following figure represents the spectrum of ledger
models and their relative trade-offs.
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Figure 3: Comparison of Ledger Models

Set-based ledgers effectively have a near-zero partial
fork rate, but the trade-off is that tamper resistance is
almost non-existent. The opposite end of the spectrum
would be a typical blockchain structure, which offers strong
tamper resistance at the cost of a high partial fork rate.
Everything in between can be classified as DAG ledgers,
common examples of which include the block-lattice design
popularized by Nano and the Tangle by IOTA. A block-
lattice maintains relatively weak partial order relations
which makes for an easily justified foundation for high-
performance ledger systems. However, it also has relatively
weak tamper resistance, which increases the surface area for
both malicious attacks and unintended state changes.

Firechain adopts a hybrid approach. In pursuit of high
performance, it uses a modified block-lattice DAG ledger
structure for account interactions. To address the relatively
weak security guarantees of the DAG alone, we introduce a
canonical global state chain which maintains references to
account-level transactions. Each of these design choices will
be discussed in detail next.

2.2 Constraints

First, let’s take a look at the precondition of using this
ledger structure for the state machine model. This structure
is essentially a combination of the entire state machine as
a set of independent state machines, where each account
corresponds to an independent state machine, and each
transaction only affects the state of an account. Transac-
tions are grouped and organized into account-specific chains.
Therefore, we have the following restrictions on the state S
and transaction T in Firechain:

Definition 2.1 (Degrees of Freedom) At any given
point in time, the system state s ∈ S is defined as
the multidimensional vector s = (s1, s2, ..., sn), which
is a composite of the state si of each account. For
∀ti ∈ T , after a given transaction ti has been executed,
the system state transitions as follows: (s1

′, ..., si
′, ..., sn

′) =
σ(ti, (s1, ..., si, ..., sn)). In order to achieve this transition,
we must satisfy sj

′ = sj , j ̸= i. This is referred to as the
Single Degree of Freedom Constraint.

Intuitively, a single degree of freedom transaction will
only change the state of one account without affecting the

state of other accounts in the system. In the multidi-
mensional vector space of the world state, a transaction is
isolated such that the state transition moves only along axes
parallel to its origin.

It is important to note that this definition is more strin-
gent than that of transactions under the models of Bitcoin,
Ethereum and other popular networks. A transaction in
Bitcoin necessarily changes the state of at least one account
and potentially more; similarly Ethereum transactions may
mutate the state of any number of accounts through message
calls and other interactions. Therefore, determining the
current state of any given account requires a comprehensive
reconstruction of the account’s entire history, which, in turn,
will almost certainly require the same for other accounts,
and so on. Given the open nature of common decentralized
applications, the scope of this task can quickly expand
and become untenable even in cases where the accounts of
interest have made just one such transaction.

When enforcing the Single Degree of Freedom constraint,
the possible relationships between transactions can be sim-
plified to just three types. Any two transactions are either
orthogonal, meaning their ordering has no bearing on the
final state, parallel, meaning they affect the same state space
and, therefore, the order of operations may be significant,
or causal, meaning a specific ordering is necessary for both
to be valid. This constrained relationship model provides a
clear set of conditions for grouping transactions by accounts.

Here is an example to illustrate the difference between
these approaches:

Figure 4: Single Degree of Freedom

Suppose Alice and Bob each have $10 USD respectively.
The initial state of the system is s0 = (10, 10). Should
Alice transfer $2 to Bob using Bitcoin or Ethereum, a single
transaction t′ will cause the system to transition directly

into the final state s0
t′→ s′.

On Firechain, a transaction t′ that changes the state of
two accounts is not possible, because it does not conform
to the single degree of freedom constraint. Therefore, the
proposed interaction must be split into two transactions:
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1) A transaction t1 that initiates a transfer of $2 USD
sent by Alice; and

2) A transaction t2 that acknowledges receipt of $2 USD
sent by Bob.

As such, there are two different paths s0
t1→ s1

t2→ s′

and s0
t2→ s2

t1→ s′. These two paths are respectively
passed through the intermediate state s1 and s2, and these
intermediate states are the mapping of the final state s′ in
their respective account dimensions.

In simpler terms, this means that if you only care about
the state of a certain account, you need not be concerned
with the transactions of any others.

Definition 2.2 (Circuits) A pair of related transactions
which together result in the intended final state, called the
request and its corresponding response transactions, are re-
ferred to as a circuit. The account responsible for initiating
the request transaction t is recorded as A(t); the counter-
party who sends the corresponding response transaction t̃ is
recorded as A(t̃).

Given the above definition, it becomes clear that the set
of possible relationships between any two transactions in
history is quite small. In fact, there are only three possible
relationships, which can be defined as follows:

Definition 2.3 (Transaction Relationships) The pos-
sible relationship between two transactions t1 and t2 are:

Orthogonal: If A(t1) ̸= A(t2), the two transactions are
orthogonal. This is recorded as t1 ⊥ t2;

Parallel: If A(t1) = A(t2), the transactions are parallel.
This is recorded as t1 ∥ t2;

Causal: If t2 = t̃1, then the two transactions are causal.
This can be recorded as t1 ▷ t2, or t2 ◁ t1.

These definitions are important to understand prior to
the introduction of Firechain’s unique ledger model.

2.3 Defining Firechain’s Ledger

First, let’s clarify the characteristics of the partial order-
ing relationship between any given set of transactions in
Firechain:

Definition 2.4 (Partial order of transactions) One
can represent the partial order relationship between any
two transactions in the network’s history as a dualistic
relationship <:

A response transaction must follow a corresponding re-
quest transaction :t1 < t2 ⇔ t1 ▷ t2;

All transactions in an account must be strictly and
globally ordered: ∀t1 ∥ t2, it must hold true that: t1 < t2, or
t2 < t1.

Due to the strict partial ordering relationship established
here, on the transaction set, any set of T is guaranteed to
have the following characteristics:

• Irreflexive: ∀t ∈ T , by definition there is no such
relationship as t < t;

• Transitive: ∀t1, t2, t3 ∈ T , if t1 < t2, t2 < t3, then
t1 < t3;

• Asymmetric: ∀t1, t2 ∈ T , if t1 < t2, then t2 < t1 is
impossible.

Definition 2.5 (The HotDAG Ledger Model)
Firechain’s ledger model can be described as a strict partial
order set which is composed of the set T of transactions
and a partial poset < of the ledger state. This concept is
well represented as a DAG structure, such as shown in the
following figure.

Figure 5: Transaction relationships in the HotDAG

In the graph diagram above, each node represents
a transaction and vertices indicate dependencies between
transactions. For example, a → b indicates that transaction
a depends on transaction b.

The ledger model described here is structurally and
conceptually very similar to a block-lattice. Account inter-
actions are divided into request and response transactions,
each of which corresponds to a separate block, each account
Ai corresponds to a single chain, a transaction pair, and a
response transaction referencing the hash of its correspond-
ing request transaction.

3 Canonical Global State Chain

3.1 Transaction Confirmation

When an account’s ledger is forked, the result of consensus
may oscillate between two forked ledgers. For example,
based on a blockchain structure, if a node receives a longer
forked chain, the new fork will be selected as the consensus
result, and the original fork will be abandoned. The result is
that the transaction on the original fork will be rolled back.
Of course, transaction rollbacks are very problematic, and
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they can lead to various inconsistencies potentially including
double-spends.

To illustrate the risk of such an event, imagine that a
business receives a payment, provides goods or services, and
then that payment is subsequently retracted. Clearly, the
merchant will bear a loss in this situation. Therefore, when
a user receives a payment transaction, it is prudent to wait
for the system to confirm the transaction such that the
probability of retraction is sufficiently low to consider the
transaction final.

Definition 3.1 (Confirmation and Finality) When a
transaction is referenced in a global block, it is considered
confirmed. After a certain number of confirmation where
the probability of the transaction being reversed is below
a certain threshold ϵ, the transaction is considered final.
Pr(t) < ϵ ⇔ t is final.

Understanding transaction finality is rather complex,
because whether a transaction is truly final depends on the
implicit confidence level of 1− ϵ. Not every transaction has
the same risk of loss in the case of a reversal; for example the
seller of a high-value item and a donation recipient simply
would not be equally impacted should the transaction be
invalidated. In this way, the ϵ necessary to consider the
transaction final may vary dramatically depending on use
case.

This is a well known concern in distributed ledger net-
works, and it’s common for merchants to require a certain
number of confirmations in order for a transaction to be
considered complete. In Ethereum and other blockchains,
the number of confirmations indicates the depth of a trans-
action in the blockchain. That is, the number of new blocks
that have been added subsequent to the block containing
the transaction in question. The greater the number of
confirmations, the lower the probability of the transaction
being reversed. As a result, merchants can implicitly set
the confidence level required for transactions by simply not
accepting deposits until a desired threshold of confirmations
has been crossed. This is acceptable in a blockchain ledger
because the probability of reversal decreases with time
due to the hash-based relationship of blocks. As new
transactions are constantly being added to a single global
ledger, the probability of any block being tampered with
will naturally decrease over time.

Conversely, because a block-lattice type ledger groups
transactions by account, the depth of a given block will only
increase when the same account has additional activity. In
other words, transactions sent by other accounts will have
no effect on the confidence of a given account’s transactions.
Therefore, it is necessary to implement certain consensus
rules that reasonably address the inherent risks in this ledger
design.

Nano, as previously noted, introduced the first block-
lattice implementation which is backed by a voting-based
consensus algorithm wherein transactions are validated by
a set of delegate nodes. Each node has a certain amount of

delegated voting power, and once a transaction has received
enough votes, it is considered to be confirmed. However,
there are a few problems:

• The time for a given transaction to reach the threshold
can’t be reasonably estimated as it relies on factors
that are completely uncontrolled by almost every
network participant, such as the number and relative
voting power of nodes online at any given time.

• It is possible that a transaction may never receive
enough votes to be fully confirmed but have received
too many votes to be ignored outright, resulting in
undesirable outcomes up to and including funds being
stuck in limbo forever.

• If a higher degree of confidence is desired for any subset
of the network, the threshold of voting must be raised
globally, which exacerbates the above concerns.

• The probability that any given transaction can be
reversed does not actually decrease with time, because
the cost of overriding a historical vote does not implic-
itly change over time.

• Because historical voting data is not persisted in
the ledger, there is no reliable way to estimate the
probability of reversal for any given transaction.

Firechain addresses these concerns by referencing newly
confirmed account transactions in a canonical global state
chain. As a result, the HotDAG ledger attains a similar level
of tamper resistance as pure blockchains while exhibiting the
speed and scalability of a pure DAG model. Furthermore,
because global blocks are known to all nodes in the network,
conditions for finality can be unambiguously defined. In
this way, the global state chain is one of the most powerful
components of the HotDAG ledger model.

3.2 Definition of the Global State Chain

The global state chain is the most important storage struc-
ture in Firechain. Its main function is to maintain the
consensus of Firechain ledgers.

Definition 3.2 (Global Blocks and Global State Chain)
A global block is a structure that captures the latest state of
any account that has had any interactions on the network
since the prior global block. The account state includes the
balance of the account, the Merkle root of the storage state
if the account is a contract, and the hash of the last block in
the account’s chain. The global state chain, then, is a chain
structure composed of global blocks, where each block refers
to the hash of the previous block.

The state of an account includes the current balance of
its token holdings and the hash of the account’s last block.
In the case of contract accounts, it also contains the Merkle
root of its storage state. Account states are represented in
global state as follows:
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Figure 6: The Global State Chain

struct AccountState {

// balances of tokens held by the account

map<uint32, uint256> balances;

// Merkle root of the contract’s state

optional uint256 storageRoot;

// hash of the last transaction

// of the account chain

uint256 lastTransaction;

}

The structure of global blocks is defined as follows:

struct GlobalBlock {

// hash of the previous block

uint256 prevHash;

// account states

map<address, AccountState> state;

// signature

uint256 signature;

}

Note that the structure used to record balances in
Firechain’s account state is not a single balance value;
rather, it is a mapping of token IDs to balances. In this
way, global account state entries can support balances for
multiple native tokens.

3.3 Global chain and transaction confirma-
tion

The inherent security flaws of the block-lattice model are
well compensated by the introduction of the global state
chain. For an attacker to successfully execute a double-
spend attack, in addition to rebuilding the hash references
in the account’s own ledger, the entire global chain would
also need to be rebuilt for all the blocks after the first global
block containing a reference to the transaction in question,

as well as to produce a longer global chain such that other
nodes will accept it as the canonical chain state. In this way,
the cost of any such attack is dramatically increased and the
probability of success approaches impossibility.

In Firechain, the confirmation mechanism of transactions
is similar to Ethereum:

Definition 3.3 (Transaction Confirmation in Firechain)
Once a transaction is referenced in any global block,
the transaction is confirmed. Therefore, the number of
confirmations a transaction has is equal to the depth of the
first global block in which it is referenced.

Under this definition, a transaction’s confirmation count
will necessarily increase by 1 every time the global chain
grows, and the probability of reversal decreases to near zero
after approximately 5 such confirmations. In this way, it
is possible to customize the threshold for finality by simply
waiting for the requisite number of confirmations. It is possi-
ble to define this requirement at the contract level, and the
network will automatically withhold the transaction from
processing until the desired thresholds has been reached.

The global chain itself relies on consensus. In the event
of a global chain fork, the fork with the most weight, i.e. the
longest chain, is considered the canonical chain. As with any
blockchain, if the global chain is successfully forked, some
previous state will necessarily be rolled back. In this way,
the global chain is the cornerstone of the network’s security,
and as such these events should occur only under extremely
rare circumstances.

3.4 Compressed storage

Clearly, it is not sustainable to capture all account states in
every global block because the storage requirements would
rapidly balloon to an unmanageable level.

Figure 7: Naive Global State

Firechain uses a simple incremental storage approach to
reducing global chain storage space. That is to say, a global
block records only a delta changeset for account states.
In other words, if there have been no transactions for an

8



PR
E-
RE
LE
AS
E
D
RA
FT

account between the two global blocks, the latter need not
contain any reference to that account.

Global Block#2
A1 : s1′

Global Block#1
A1 : s1
A2 : s2
A3 : s3

Global Block#3

A2 : s2′′

Figure 8: Incremental Global State Updates

Only the final state of each account is persisted in the
global chain. In other words, at most one entry per account
will be captured in any given global block whether an
account sends 1 or 1,000 transactions since the last global
block. Therefore, a global block takes up to S ∗ A bytes in
maximum. Among them, S = sizeof(si), is the number of
bytes occupied for each account state, and A is the total
number of system accounts. If the average ratio of active
accounts to total accounts is a, the compression rate is 1−a.

4 Consensus

4.1 Design Goals

When designing a consensus protocol, the following factors
are necessary to consider:

• Performance. The highest priority goal for Firechain
is to support real-world production use cases, and
meeting that goal demands a highly performant net-
work. In order to ensure a consistently high level
of throughput and to minimize latency within the
system, the consensus protocol must feature a high
convergence speed.

• Scalability. Firechain is intended to be an open
platform that can power applications of any scale,
therefore, flexibility of scaling solutions is a key re-
quirement. While the ability to scale the network
as a whole is obviously important, one of Firechain’s
primary goals is to enable much more granular and
narrowly targeted scaling solutions, such as at the
application or consensus group level.

• Security. Given the open nature of decentralized
ledger networks and the permanence of transaction
outcomes, it is necessary to provide strong security
guarantees. At a minimum, Firechain must be resilient
to typical threats seen in the wild, such as Sybil
attacks, double-spending, so-called 51% attacks, and
DoS and other network disruption attacks.

The security of Proof of Work (PoW) consensus is well
established. Under this model, consensus, and therefore
security, can be maintained so long as at least 50% of all
contributing nodes are honest and malicious nodes control
no more than 50% of the network. However, PoW is not a
viable approach for two main reasons: the convergence speed
is too slow and, therefore, performance-related requirements

must be relaxed to compensate, and the energy waste needed
to secure a PoW network is simply untenable in today’s
climate.

Proof of Stake algorithms remove the requirement to
provide proof of computational effort, which improves con-
vergence speed, increases the cost of executing one-off at-
tacks, and dramatically reduces the energy consumption of
the network’s validators. However, the scaling potential of
most PoS solutions is limited, and the so-called Nothing at
Stake problem is challenging to address.

Some Byzantine Fault-Tolerant (BFT) algorithms per-
form better than PoW and offer stronger security guarantees
than PoS, but the hurdle of scalability remains. Thefore,
BFT-based networks are generally only suitable for private
consortia and other closed networks where scaling isn’t
critical.

Delegated Proof of Stake algorithms offer balanced per-
formance and scalability while lowering the probability of
partial forks by constraining the set of validators capable
of producing blocks. As a result, DPoS’s security level is
somewhat lower than PoS and BFT consensus models, but
they generally outperform other models in most practical
ways. The most notable weakness in this model is that no
less than 2/3 of the network’s validators must be honest in
order to maintain consensus.

Firechain’s consensus model takes a layered approach to
security and is based on DPoS. This model, called Layered
Delegated Proof of Stake (LDPoS), complements Firechain’s
asynchronous design well and offers a unique blend of the
three primary design goals which should meet the needs of
most real-world use cases.

4.2 Layered Consensus

The goal of LDPoS is to functionally decompose the consen-
sus function Φ:

Φ(l1, l2, . . . , ln) = Ψ(Λ1(l1, l2, . . . , ln),

Λ2(l1, l2, . . . , ln), . . .

Λm(l1, l2, . . . , ln))

(5)

Λi : 2
L → L is referred to as the local consensus function,

and, therefore, the result is called local consensus;
Ψ : 2L → L is referred to as the global consensus

function, and it is responsible for further validating local
consensus results. Its output is called final consensus.

With this separation in place, the system’s consensus is
segregated into two independent processes:

• Local consensus: the process of validating account
blocks corresponding to request and response trans-
actions at the user account or contract account level,
which includes proposing updated account ledgers to
global consensus.

• Global consensus: the process of validating and
including by reference the local consensus results,
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which includes the creation of global blocks. In the
event of a local consensus conflict, the global consensus
function is responsible for determining which is the
correct state.

4.3 Block Production and Consensus
Groups

The ledger structure of Firechain is organized into account-
specific chains, backed by a single global chain. This design
offers a convenient way to define the most appropriate
validator set for both local and global consensus: the right
to produce account blocks should generally be granted or
otherwise controllable by the account’s owner, and the right
to produce global blocks should be subject to a democratic
election process. While it is technically possible for user
accounts to be locally validated exclusively by the account
holder, forcing such a task on most users would be unrea-
sonable. Therefore, it is necessary for account holders to
have the ability to delegate that responsibility to others who
are willing and able to perform the role on the user’s behalf.
Clearly, a unified process of generating and validating blocks
is desirable, and this is the main reason for the introduction
of consensus groups.

Definition 4.1 (Consensus Group) A consensus group
is a 4-tuple (L,U,Φ, P ) which describes the consensus mech-
anism of some subset of the network’s accounts or the global
state chain.

L represents either the global chain A or a set of account
chains As in the ledger (L ∈ A|{As});

U is a party with the right to produce blocks for the
chain(s) defined by L;

Φ specifies the consensus algorithm itself; and
P specifies the parameters of the consensus algorithm.

As shown in the above definition, consensus groups can
offer a great deal of flexibility by applying a particular set
of consensus parameters designed to meet a specific goal. In
fact, it is possible for consensus groups to implement entirely
different consensus rules from the broader network, so long
it remains compatible with the global consensus algorithm.

4.3.1 The Global Consensus Group

The consensus group of the global chain is called, unsur-
prisingly, the global consensus group. It is by definition the
most important consensus group in Firechain. The global
consensus group’s Φ is bound to the LDPoS algorithm, and
it represents the final layer Ψ in the LDPoS design. The
number of validators in the group and the block creation
interval are specified by the parameters P .

Initially, Firechain’s global consensus group contains 25
validators and is expected to produce blocks at a 1-second
interval. Under these parameters, a typical transaction
will be validated within approximately one second and be
considered final after approximately 5 seconds.

4.3.2 Private Consensus Groups

Private consensus groups produce transaction blocks on
behalf of one account or a set of accounts controlled by
the same party. By default, user accounts act as their
own single-member private consensus group, which is to say
that the account itself is responsible for maintaining its own
ledger and propagating changes for validation at the next
layer of consensus. In order to fulfill this role, the user must
run a local Firechain node such that they may interact with
the broader network.

The clear advantage of private consensus is that the
probability of unintentional partial forks is very close to zero.
This is because only the user (or their trusted agent) has
the right to produce blocks against its ledger, which means
the only way for a fork to occur is when the user attempts
to propose a competing ledger, whether maliciously or as a
result of some type of software error. On the other hand,
the biggest disadvantage of this approach is that the user’s
node must be online in order for their transactions to be
validated and propagated.

It is important to note that private consensus is not
applicable to contract accounts. This is because, should
the contract’s private consensus provider fail to operate
as expected for any reason, no other node in the network
would be capable of producing response transactions for that
contract. The effect would be equal to the application being
completely removed from the network for all users unless
and until it returns to normal operation. Clearly this goes
against the basic principles of decentralized networks, and as
such, private consensus is not allowed for contract accounts.

4.3.3 Delegated Consensus Groups

Delegated consensus groups act as sets of designated proxy
nodes that are authorized to validate and propagate signed
transactions through network on behalf of accounts. Both
user accounts and contract accounts are able to be added to
delegated consensus groups, and the network maintains one
public delegated consensus group which freely performs this
role on behalf of any account for which it is appointed. In
this way, the public delegated consensus group is operated
as a permissionless public service.

Other delegated consensus groups may be created by
private node operators and consortia thereof, and it’s pos-
sible for this type of group to define a customized set of
consensus parameters P that serve particular use cases. For
example, private node operators may choose to create groups
that guarantee faster local consensus than the public group.
Because operating such groups isn’t free of overhead costs,
it is also possible for these groups to apply transaction fees.

Contract accounts are, by default, assigned to the public
group, and the owners thereof may choose to assign another
delegated consensus group if desired. If desired, any user
account may delegate its local consensus authority to any
delegated consensus group.
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4.3.4 Selective Consensus Groups

It is also possible to create a special type of delegated
consensus group which can restrict its validation to accounts
of its choosing, rather than performing the role blindly for
any account for which it is appointed. These permissioned
delegated consensus groups are suitable for a wide range of
specialized use cases, including application-specific scaling
solutions, private relays and targeted enforcement of white-
or blacklists. Because this type of group can also become
a point of centralization or censorship, they are explicitly
ineligible to receive any type of native network rewards at
this time. However, they represent an important role in the
network, and it’s possible for the applications they serve to
compensate the group directly using non-native rewards if
desired.

4.4 Consensus Priority

The priority of global consensus is higher than that of local
consensus. In the case of a local consensus conflict, the
global consensus group’s selected fork will prevail. In other
words, once the global consensus group seals a particular
local consensus result, that result is sealed and final, and it
is not possible to trigger a subsequent reversal of that sealed
state by presenting a longer local chain.

This is vitally important when considering cross-chain
transfers or other out-of-band events. To illustrate this
point, should a remote chain’s history be rolled back, the
corresponding account chain of the relay contract mapped
to that remote chain must adjust accordingly. However, if
the local consensus results of the relay account have already
been captured by the global consensus group, it is not
possible to successfully complete the rollback. This may lead
to data inconsistencies between the relay and the remote
chain.

One way to avoid this scenario is to set a delay in the
consensus group’s P , which instructs the global consensus
group to record the local result after a given number of
blocks have passed. This approach greatly reduces the prob-
ability of such inconsistencies, but it is important to note
that this risk can’t be mitigated with absolute confidence.
Therefore, any Firechain application which deals with out-
of-band effects must logically handle any event that may
lead to inconsistency.

4.5 Asynchronous Design

The three stages of a transaction’s lifecycle are initiation,
propagation and confirmation. In order to improve the
performance of the system, these three steps should be
performed asynchronously. This is because, while the speed
of propagation and confirmation are relatively static, the
load of transactions pending confirmation at any given
time may vary dramatically. By processing each stage
asynchronously, the network is more resilient to peaks and

troughs of activity, and the overall throughput and stability
of the system can be greatly increased.

The transaction model of Bitcoin, Ethereum and sim-
ilar networks is simple: all transactions are placed in an
unconfirmed pool, and miners subsequently packages these
transactions into blocks. In this way, the transaction is
propagated and confirmed at the same time. As the depth
of the blockchain grows, the transaction eventually reaches
a suitable confidence level and is considered final.

There are two main problems in this model:

• Transactions are not persisted to ledgers in an uncon-
firmed state. As a result, unconfirmed transactions are
unstable, and there is no easy way to identify which,
if any, pending transactions are indeed valid without
simulating the outcome of every one.

• There is no asynchronous mechanism for propagating
and confirming transactions. Transactions are only
propagated once confirmed, and the speed of propaga-
tion is therefore constrained by the convergence speed
of the consensus algorithm.

Firechain introduces a fully asynchronous transaction
model; transactions are first written to the ledger of the
sender, propagated throughout the network, and confirmed
in three distinct stages. In other words, immediately
upon local validation, a transaction can be persisted to
the account’s chain, and the updated ledger is immediately
propagated to nodes throughout the network without being
blocked by the global confirmation process. In this way,
transactions are irrevocable in the sense that they are known
throughout the network almost instantly.

This is similar to a typical producer-consumer model.
In the lifecycle of the transaction, regardless of changes
in account-level transaction frequency, consensus groups
can process transactions at a constant rate. In this way,
Firechain ensures the maximum utilization of the platform’s
resources, which greatly improves the system’s capacity and
throughput.

5 Async Virtual Machine (AVM)

5.1 EVM compatibility

Given the scale of the Ethereum developer community and
the rate of adoption of EVM-based networks more broadly,
Firechain aims to offer as much EVM compatibility as prac-
tical. As such, most of the original semantics of the EVM in-
struction set is maintained in the AVM. Firechain’s account
structure and transaction definition is rather different from
Ethereum, therefore the semantics of certain instructions
must be redefined. The detailed semantic differences can
be found on our website. The most significant difference in
semantics is that of message calls.
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5.2 Event Driven

In Ethereum, a transaction or message may affect the state
of multiple accounts. For example, a contract call may
result in state changes across multiple contract accounts at
the same time through message calls. These changes occur
either at the same time, or not at all. Therefore, Ethereum
transactions conform to the ACID principle (Atomicity,
Consistency, Isolation, Durability), which incidentally is also
a key reason for Ethereum’s relative lack of extensibility.

In pursuit of greater scalability and performance guar-
antees, Firechain adopts a final consistency scheme aligned
with the BASE principles (Basic Availability, Soft-state,
Eventual consistency). Specifically, Firechain is designed as
an Event-Driven Architecture (EDA), wherein each smart
contract is considered to be an independent service, and
messages may be passed asynchronously between contracts,
but no internal state is shared.

As a result, the AVM does not support synchronous
function calls across contracts. The instructions affected by
this decision are mainly the CALL and STATICCALL
instructions. In other words, calls to remote contracts can’t
be executed immediately, nor can they be relied upon for the
result of any remote execution. Instead, a remote contract
call generates a request transaction which is asynchronously
handled.

5.3 Smart Contract Language

Most smart contracts on Ethereum are written in a Turing-
complete, synchronous programming language called Solid-
ity. To support asynchronous semantics, Firechain intro-
duces an async-first smart contract programming language
called Pyro.

Most Solidity semantics are similar in Pyro, with the
notable exception of any type of remote operation. Pyro
developers can define observables and listeners to implement
asynchronous communication. In this way, Pyro message
calls are handled similarly to asynchronous callbacks in other
programming languages.

For example, suppose a contract A needs to call the
get() method in contract B and use the result to update its
own state. In Solidity, this functionality can be implemented
using a simple function call:

pragma solidity ^0.4.0;

interface B {

function get(uint a, uint b) returns (uint);

}

contract A {

uint total = 10;

function test(address addr, uint a, uint b) {

total += B(addr).get(a, b);

}

}

This works in Solidity due to the synchronous execution
model of the EVM. In Pyro, however, this type of call
would not assign the result to the variable value because
it is impossible to know the result of that remote call in
real-time. Instead, contract A and contract B communi-
cate asynchronously by transmitting messages between each
other. The above example could be expressed in Pyro as
follows:

/**

* This example is from the perspective of

* A, which must know about B’s observable

* events and the signature of functions A

* might want to invoke. In Pyro, the type

* ‘abstract entity‘ is analogous to that

* of an ‘interface‘ in Solidity.

*/

pragma pyro ^0.1.0;

abstract entity B {

// define B’s observable Done event

observable Done(uint result);

// define the signature of B.get()

@public function get(a: uint, b: uint);

}

entity A {

public $B: B = B(’fire:a1b...2c3’);

protected $total: uint = 10;

function test(a: uint, b: uint) {

// request the result from $B

$B.get(a, b);

}

// define the handler - note that the

// function name is not significant

@trigger($B, ’Done’)

listener onDone(result: uint) {

// use the return data

$total += result;

}

}

In contract A, when the test() function is called, a
message is sent to the contract B. That message will be
asynchronously handled and the result will therefore not be
available immediately. Therefore, it is necessary to define a
handler on A by using the @listener keyword which can,
in turn, receive the result and update A’s local state.

In contract B, the function get() performs some internal
computation, which may include further asynchronous calls
as the case may be, and, upon completion, emits an event
Done(). This event is observable, which is to say that other
contracts may register listeners that are asynchronously
executed with the same signature as the event itself.
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Message calls in Pyro are translated into CALL in-
structions, and a request transaction will be added to
the contract’s ledger as a result. In this way, Firechain
ledgers can serve as a sort of message bus for asynchronous
communication between contracts. This approach ensures
reliable storage of messages, prevents duplication, and pro-
vides a simple and semantically clear way of managing
asynchronous operations. Messages sent to a contract by
the same caller can guarantee FIFO (First In First Out),
which is to say that several calls to the same remote contract
will execute listeners in the same order they were made.
Notably, messages sent by other network participants to the
same contract do not offer any such guarantee of a particular
order.

It should be noted that the concept of events in Solidity,
defined using the event keyword, are conceptually different
from Pyro’s observables. Events are indirect messages that
are consumable only by off-chain readers, such as a back-
end process or web- or mobile-based user interface. Pyro
supports both of these concepts.

5.4 Standard Libraries

Smart contract developers on Ethereum are frequently
plagued by the lack of standard libraries in Solidity. For ex-
ample, there are no canonical solutions available for common
use cases such as user signature validation. As a result, many
smart contract developers rely on code written by others and
for which little to no support or documentation exists. Many
decentralized applications have suffered catastrophic losses
due to bugs in custom implementations of common patterns
that by all accounts should be covered by standard libraries.
Indeed, countless billions of dollars of user funds have been
permanently lost or stolen due to trivial, avoidable logic
errors.

In Ethereum’s EVM, contracts can delegate certain
internal functionality to another deployed contract using the
DELEGATECALL instruction to implement library-like
functionality, and several so-called Precompiled Contracts
exist to perform certain operations that would be impossible
or economically infeasible to perform on-chain such as cer-
tain types of hashing operations. However, these functions
are not designed to address complex requirements.

Firechain will offer a set of standard libraries accessible
from Pyro contracts to support use cases such as string
processing, floating point numbers, complex mathematical
operations, sorting functionality, hashing operations, en-
cryption schemes and so on. These standard libraries are
designed to be highly performant and are implemented
as native extensions to the AVM. These functions will be
accessible using the DELEGATECALL instruction.

Firechain’s standard libraries can be extended as needed,
however, because the system’s state machine model is de-
terministic, it is not possible to support non-deterministic
functions like secure random numbers through this mecha-
nism.

5.5 Gas

There are two main functions for Gas in the Ethereum:

• To quantify and constrain the resource consumption
by EVM code execution; and

• To ensure that EVM code is eventually halted in all
cases.

Interestingly, computability theory asserts that the so-
called Halting Problem is an incomputable one within a
Turing-complete system. In other words, it is technically
impossible to guarantee whether a smart contract can
be stopped after limited execution through static analysis
alone. Therefore, the concept of gas has been retained in
the design of Firechain’s AVM. However, there is no such
concept as a Gas Price in Firechain, which means there is
no fee for using gas within the system. Instead, Firechain
implements a dynamic resource sharing mechanism to con-
trol usage. This mechanism is called Heat.

6 Economic Model

6.1 Native Token

In order to control resource usage and to encourage maxi-
mum decentralization through widespread node operation,
Firechain implements a native token represented by the
symbol $FIRE. The whole unit of the $FIRE token is
referred to simply by the symbol $FIRE, while the smallest
divisible unit is referred to as a spark, 1FIRE = 1018 spark.

The global state chain is central to the network’s security
and performance. In order to encourage node participation
in global consensus, the Firechain protocol issues rewards
for the production of global blocks. When users deploy
contracts, issue tokens, or register FNS domain names,
$FIRE is consumed. However, sending transactions does
not consume $FIRE in the way that Ethereum transactions
consume ether ; instead, users need only stake in order to
obtain heat capacity and thereby the right to send and
receive transactions on the Firechain network.

6.2 Resource Allocation

Firechain is designed as an open, permissionless decentral-
ized computing platform, and the functional requirements
and capabilities of smart contracts vary widely. For in-
stance, smart contracts have different requirements for scale,
availability, and finality. For many smart contracts, these
requirements may vary at different times.

On Ethereum, transactions are subject to a typical
bidding model for resource usage, which can effectively
control the balance between supply and demand in principle.
However, it is difficult to estimate market demand at any
given time and it is, therefore, very likely that users will
fail to assign a reasonable value for any given transaction.
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Furthermore, the nature of resource bidding is inherently
competitive, and there is no generally accepted way to
rationalize the allocation of resources at the account level.
As a result, most users simply accept the gas price suggested
by their wallet software, which enables market failures to
occur quite frequently at the expense of users.

6.2.1 Heat Calculation

We have adopted a dynamic resource allocation model in
Firechain, which allows users to ensure resource allocation
in four ways:

• Completing a PoW challenge when the transaction is
initiated;

• Staking a certain amount of $FIRE in the account;

• Burning a certain amount of $FIRE for a one-off
transaction;

• Other accounts may delegate heat capacity to the user.

Any account’s specific heat capacity can be calculated
through the following formula:

H = Hm ·
(

2

1 + exp (−ρ× ξ⊤)
− 1

)
(6)

In this formula, Hm is a constant representing the
maximum limit of a single account’s heat capacity, which
is relative to the total capacity of the system and the total
number of accounts. ξ = (ξd, ξs, ξf ) is a vector representing
the requirement for a given amount of resource usage: ξd
is the PoW difficulty that the user may use to calculate a
solution when submitting a transaction, ξs is the amount
of $FIRE staked by or on behalf of the account, and ξf
is the one-time value that the user is willing to burn for
a transient increase of their account’s heat capacity for a
single transaction. It should be noted that ξf is not a fee,
which is to say this value will be permanently destroyed and
removed from circulation rather than paid another network
participant.

In the formula, the vector ρ = (ρd, ρs, ρf ) represents
the weight of the ways to obtain heat capacity; that is, the
heat capacity obtained by the destruction of 1 $FIRE is
equivalent to staking ρs/ρf $FIRE for an instant.

If the user neither stakes $FIRE nor burns the one-
time value, a PoW must be submitted with the transaction.
This is because there would otherwise be no available heat
capacity to initiate the transaction. This is an effective
mechanism to protect against spam and dust attacks, and
more generally it protects the system’s resources from being
abused. This approach enables users to get relatively low
heat capacity for practically no cost, thereby reducing the
barrier of entry for low frequency users, whereas high-
demand users must invest substantial resources in order to
maintain sufficient heat capacity for their usage.

6.2.2 Resource Quantification

It is important to note that the global state chain also serves
as a global clock. That is to say, the global chain can be used
to quantify the resource usage of an account accurately, both
instantaneously and over time. For every account block,
the hash of the most recent global block is referenced, and
the height of that global block is used as the timestamp
of the transaction. Therefore, by simply quantifying the
delta between two transaction timestamps, the network can
determine whether the interval between the two transactions
has been sufficient to regenerate the necessary amount of
heat capacity for the latter to be valid.

Figure 9: The Global Chain Clock

In the figure above, account A generates four transac-
tions over two time intervals, while account B generates
only two transactions over three intervals. Therefore, the
average transactions-per-second of A for this period is twice
that of B. For simple transfers, the average TPS of an
account is sufficient. For smart contracts and more complex
interactions, however, each transaction consumes a different
amount of resources. Thus, it is necessary to account for the
resource usage of each transaction in a more granular way in
order to calculate the account’s average consumption over a
given period of time. The average resource consumption of
the recent k transactions in an account chain with a height
of n can be quantified as follows:

Costk(Tn) =
k ·

∑n
i=n−k+1 gasi

timestampn − timestampn−k+1 + 1
(7)

In this formula, for a transaction Tn, timestampn is
the timestamp of the transaction and gasn is a measure
of the transaction’s resource usage. When verifying a trans-
action, the node responsible for validating it will determine
whether the account’s heat capacity satisfies the condition:
Cost(T ) ≤ H, and in the event it is not satisfied, the
transaction will be rejected. In this case, the user would need
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to resubmit the transaction after either increasing their heat
capacity or waiting for sufficient capacity to be restored.

6.2.3 Delegated Heat Capacity

It is likely that some users will maintain larger $FIRE stakes
than necessary to cover their own transactions. If so, it’s
possible for that user to delegate some or all of their heat
capacity to others who may in fact need more than they
can afford to obtain through staking or PoW solutions.
Firechain supports this type of operation natively. In order
to delegate heat capacity, a user submits a transaction to
the staking contract containing the amount of $FIRE stake
that should be delegated, the address of a beneficiary, and
the period of time for which the delegation is valid unless
manually revoked at an earlier point. Once the transaction is
confirmed, the heat capacity corresponding to the delegated
stake will be immediately available to the beneficiary. Once
the delegation period ends, the stake will once again be
assigned to the owner and no longer be available to the
beneficiary.

While the native solution does not provide the delegating
user with any personal benefit, it is possible for users to
implement some type of income-generating scheme that
automates this workflow, such as a heat capacity leasing
service.

6.3 Asset Issuance

In addition to native token $FIRE token, Firechain also
allows network participants to issue custom tokens. These
can be issued through a special type of transaction, namely
an Issue transaction. This type of transaction contains the
following parameters:

Issue: {

name: "TrashToken",

totalSupply: 99999999900000000000000000,

decimals: 18,

owner: "fire:abc...0123",

symbol: "TRASH"

}

Once the transaction is confirmed, the issuance fee will
be deducted from the owner’s account and the token will
be immediately available for use. The system records the
information of the new token and assigns an internally
generated token id. The owner may then mint and transfer
tokens as desired.

6.4 Vortex Cross-Chain Protocol

In order to support cross-chain value transfer of digital assets
and avoid the so-called value island problem, Firechain
supports a native cross-chain value transfer protocol, called
Vortex.

In principle, any remote chain with sufficient smart
contracting capabilities can be integrated with Vortex such
that any asset on that network can be locked remotely and
made accessible within the Firechain ecosystem. In order to
support cross-chain interoperability, a synthetic token that
corresponds to its remote native counterpart is created on
Firechain. For example, in order to import $ETH from an
Ethereum account to Firechain, one would issue a synthetic
$ETH token on Firechain whose initial supply is equal to the
total amount transferred to the Gateway contract deployed
on Ethereum.

Every supported remote chain is assigned a Gateway
Contract on Firechain which maintains the mapping rela-
tionship between relevant Firechain transactions and those
of the remote chain. A specialized consensus group is
responsible for validating interactions with the Gateway,
and the nodes that operate this group are known as Vortex
Relays. A Vortex Relay operator must maintain both a full
Firechain node and the equivalent type of node for the target
chain, and it must monitor and process transactions on both
sides of the relay at all times.

In order for a Vortex Relay to work, a synthetic asset on
Firechain corresponding to the remote chain token should be
created and ownership transferred to the gateway contract.
This enables the supply of the synthetic token to be managed
exclusively by the Gateway on Firechain such that the sys-
tem can enforce the 1:1 exchange ratio between the synthetic
asset and its remote counterpart. Similar conditions apply
to remote Gateways on target chains.

Figure 10: Vortex Cross-Chain Protocol

The figure above describes of the cross-chain value
transmission between Firechain and Ethereum. When the
Ethereum user E1 wants to transfer the token from the
Ethereum to the Firechain, it can send a transaction to
the Firechain Gateway contract address V , supplying the
user’s address A on Firechain as a parameter. The balance
of the transfer will be locked in the Gateway contract and
become part of the exchange reserve. Having observed this
transaction, a Vortex Relay node generates a corresponding
transaction on Firechain issuing the same amount of the
synthetic asset to the user’s account A. In the diagram,
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1○ and 2○ respectively indicate that E1 and E2 transfer
to Firechain account A and B. It is important to note
that if the user does not specify the Firechain address when
transferring, the cross-chain transfer is invalid and therefore
will reject the transaction.

The inverse workflow is represented by 3○. The user A
initiates a transfer from Firechain to their Ethereum account
by sending the desired quantity of synthetic tokens to the
Gateway and specifies the remote address E1 on Ethereum
to which the original asset will be transferred. The Vortex
Relay node will initiate a transaction on Ethereum to
complete the cross-chain transfer as well as a corresponding
transaction on Firechain burning the synthetic asset. On the
Ethereum side, the Gateway contract will verify whether
this transaction is initiated by a trusted Vortex relay and
transfer the original asset from the Gateway contract to the
target account E1 as requested.

All cross-chain relay nodes are expected to monitor the
target network, and in doing so they can readily verify
that every cross-chain transaction is correctly executed and
reach consensus within the consensus group. However, it is
important to note that the global consensus group will not
monitor the transaction of the target chain, nor will it verify
whether the mapping between the two chains is correct at
any point. If the target network experiences a reorg or hard
fork, the mapped transactions in the Firechain system can-
not be reverted; similarly, if the cross chain transactions in
the Firechain are rolled back, the corresponding transaction
of the target network can not be rolled back at the same
time. Therefore, when doing cross-chain transactions, it
is necessary to deal with such events within the contract’s
logic. At minimum, it must demand a sufficient number of
confirmations for incoming requests so as to decrease the
likelihood of undesirable outcomes.

7 Other Features

7.1 Scheduling

On Ethereum and other networks, smart contracts are
driven by transactions, and the execution of contracts can
therefore only be triggered by users initiating a transaction.
Of course, many applications require some form of scheduled
or recurring execution. Because Ethereum offers no native
solution for scheduling execution, some form of external
helper is needed to trigger the execution of a contract
through a clock. Many such services exist, for instance
Gelato and OpenZeppelin Defender offer this functionality.
However, myriad problems exist with this approach, not the
least of which are that performance and security are not
guaranteed.

Firechain natively supports scheduling functionality, and
any network participant can schedule transactions using
a built-in contract. In this way, both user accounts and
contracts can register logic to be executed at a particular
time in the future. The public delegated consensus group

will use the global chain as the network’s clock and send the
request transaction to the target contract according to the
desired scheduling logic. Pyro supports this functionality
through a special job definition syntax.

7.2 Naming Service

On Ethereum and other networks, accounts are generally
referenced by their public key or some derivative thereof.
There are two problems in identifying network participants
using these raw address formats:

• An Ethereum address, for example, is a 20-byte iden-
tifier with no practical relevance to users;

• Sending and receiving transactions using this type of
address is inconvenient to users and introduces several
types of attacks related to misidentification of remote
accounts, and, indeed, attacks that rely on this fact
are quite common;

In order to address these concerns, the developer com-
munity has created a non-native service known as ENS, or
theEthereum Name Service, which can be used for name-to-
address resolution, similar to how DNS translates domain
names to IP addresses. Unfortunately, Solidity smart
contracts are unable to resolve these names to their respec-
tive addresses natively; instead developers must implement
address resolution where needed.

Firechain natively supports a naming service through
which users can register easy-to-remember names and re-
solve them to the actual address seamlessly. Names are
formatted and organized similarly to web domain names,
such as somefunguy.fire. Once a FNS name has been
registered, the owner can allocate arbitrary subdomains as
desired.

7.3 Contract Updates

Ethereum smart contracts are immutable by design. Once
deployed, the code of a contract can generally not be
modified, even in cases where a catastrophic bug has been
identified in the contract. This is very unfriendly to develop-
ers and makes continuous integration and iterative updates
cumbersome or impossible.

Firechain supports a non-destructive upgrade scheme
for smart contracts natively through FNS resolution which
remains consistent with the network’s immutability guaran-
tees. The process of contract updating includes:

• An updated version of the contract is deployed and
inherits the state of the existing version;

• The FNS name of the original contract is updated to
point to the new address;

• The original contract is archived and permanently
frozen through the FREEZE instruction.
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These three steps are to be completed at the same time,
and the Firechain protocol ensures the atomicity of the
operation. Developers need only ensure that each version of
their contracts are backward-compatible such that no state
is lost.

It should be noted that the new contract will not inherit
the address of the old contract. If a transaction is sent
directly to the original address, the transaction will still be
sent to the old contract. However, because the contract
is frozen and archived, the transaction will be rejected.
This is because different versions of contracts are technically
completely different entities; while only the latest version is
capable of processing requests, all historical versions will be
retained indefinitely.

8 Governance

For a decentralized application platform, an efficient gover-
nance system is crucial to a healthy ecosystem. Firechain’s
governance model is composed of two separate but equally
important parts: on-chain and off-chain. On-chain gover-
nance is handled through a voting mechanism, and off-chain
governance is the human-driven process of iteration for the
network itself.

The on-chain voting mechanism is further divided into
two types of votes: global and local. Global voting is based
on the balance of $FIRE held by the user, which corresponds
to a calculated voting weight. Global governance is mainly
used for the election of global consensus group nodes. Local
governance is generally used by smart contracts. For a
contract to leverage the native governance mechanism, it
must register a token to be used as the basis for the
calculation of voting weight. It can be used to, for example,
elect nodes for the delegated or selective consensus group to
which the contract is assigned.

Aside from global block production, the global consensus
group has the responsibility of choosing whether and when
to upgrade the Firechain network. Delegated consensus
group votes can be used to signal support for community-
level decisions on behalf of users, for example to improve the
efficiency of decision making and avoid the all too common
failure scenario in which users who stand to gain or lose
something as a result of a certain outcome fail to participate
in voting for any number of reasons. In cases where
delegates do not use their decision-making power according
to the community’s expectations, users can register their
disapproval by voting to revoke their right to perform such
a role.

Off-chain governance is a somewhat looser concept, and
it is generally realized by the community. Any member of
the Firechain community who meets certain requirements

as set by the community can propose an improvement plan
for the Firechain protocol itself or its related systems. These
proposals are called FIP (Firechain Improvement Proposal).
FIPs are intended to be widely discussed in the community,
and whether to implement the proposed measures is deter-
mined by community vote. Of course, community members
may differ in their understanding and approval of changes, so
it is recommended that large proposals be split into several
smaller proposals which can be approved over several rounds
of voting in order to gather support.

Although some Firechain participants may not have
enough $FIRE tokens to have a meaningful impact on voting
outcomes, they can still submit FIPs and fully express their
views through voting. Those users who have the privilege to
sway the outcome of proposals must take full account of the
health of the greater community, rather than simply voting
for their own benefit. In this way, Firechain’s governance
process may remain truly democratic and reflect the needs
of the entire community.

9 Future Work

Transaction confirmation through a single global chain re-
mains a performance bottleneck of the system. Because
Firechain adopts an asynchronous design and DAG account
structure, transaction validation can be executed in par-
allel. However, due to the relationship between certain
transactions, the degree of parallelism realized can never
reach its true potential. Techniques for improving the
parallelism of transaction validation or adopt a distributed
verification strategy will be an important direction for future
optimization.

There are some shortcomings in the current LDPoS
consensus algorithm. The community must continue to
investigate optimizations that improve the consensus algo-
rithm, or to be identify alternative consensus algorithms
that can be implemented for delegated or selective consensus
groups.

In addition, the virtual machine is a very important area
of focus for reducing system delay and improving system
throughput. Because the design of the AVM is relatively
simple, it may be necessary to implement a more powerful
virtual machine in the future with more flexibility and
resilience to certain types of threats.

Finally, besides the Firechain core protocol, ecosystem
tooling and other measures aimed at improving the devel-
opment experience is another key area of future work. While
the Firechain core team has developed many such solutions,
there is much work to do to support the future growth of
the Firechain ecosystem.
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